Part Numbers: AO-08, AO-12.
Applicability: F7, G7, GPD515/G5, G5 HHP.
Note: If used in a GPD503/G3, refer to Instruction Sheet 02Y00025-0297.

Introduction: The AO-08 and AO-12 analog output option cards are mounted on the drive's control board and enables the user to employ precision analog signals to monitor drive outputs (U1-XX) as indicated in tables 4 and 5 .

Receiving: All equipment is tested against defect at the factory. Report any damages or shortages evident when the equipment is received to the commercial carrier who transported the equipment.

Warning: Hazardous voltage can cause severe injury or death. Lock all power sources feeding the drive in the "OFF" position.

Caution: This option card uses CMOS IC chips. Use proper electrostatic discharge (ESD) protective procedures when handling the card to prevent I.C. damage or erratic drive operation.

Important:

a) If this option is being installed in a drive with an encoder (PG) feedback option card, that card will need to be temporarily removed to allow access to connector 3CN on the drive's control board and TD1-TD3 on the AO-08 / AO-12 option card.
b) Before installing this option, a technically qualified individual, who is familiar with this type of equipment and the hazards involved, should read this entire installation guide.

Installation and Wiring:

1. Disconnect all electrical power to the drive.
2. Remove the drive's front cover.
3. Check that the "CHARGE" indicator lamp inside the drive is off.
4. Use a voltmeter to verify that the voltage at the incoming power terminals (L1, L2, L3) has been disconnected.
5. Option Card Installation: See Figure 1.
a) Position the option card above the control board's 3 CN connector and gently press the card into place.
b) Connect the green ground wire to the grounding terminal on the main control board.
6. Wiring: Refer to Figure 2 and Table 2. Make wire connections between the AO-08 / AO-12 card and the drive as well as all peripheral devices. Observe the following:
a) Keep the option card (i.e. control circuit) wiring separate from main circuit input/output wiring. A separate metallic grounded conduit with only the option card's wiring running through it is preferred.
b) To prevent erroneous operation caused by noise interference, use shielded cable for control signal wires. Limit the distance to 50 m (165 feet) or less.
c) Connect the option card ground wire (E) to the drive's ground terminal TB3 (12 for G5).
7. Adjustment: There are no adjustments to be made on the AO-08 / AO-12 options; however, the drive must be programmed for the output requirements of the peripheral devices. See Tables 3-5.
8. Reinstall and secure the drive's front cover.
9. Place this instruction sheet with the drive's technical manual.

Figure 2. AO-08 / AO-12 Interconnection Diagram

Table 2. Terminal Functions of the AO-08 and AO-12					
Terminal	Functions	Signal Level ${ }^{(1)}$			
		F7/G7		GPD515/G5	
		AO-08	AO-12	AO-08	AO-12
TD1	Analog signal output channel 1	0-10VDC	$0-10 \mathrm{VDC}$	0-10VDC	$0-10 \mathrm{VDC}$
TD2	Analog signal output channel 2		+/-10VDC		+/-10VDC
TD3	Output Common	OV			

(1) F7/G7: Selectable by setting of drive parameters F4-07 (TD1) and F4-08 (TD2). GPD515/G5: Selectable by setting of drive parameter H4-07.

Table 3. Adjustment of Output Signal Scaling						
Drive	Terminal	Gain Parameter (1)	Setting Range	Increment	Factory Setting	Remarks
F7/G7	TD1	F4-02	$0.0-$ 1000.0%	0.1%	100%	$10 \mathrm{VDC} / 100 \%{ }^{(2)}$
	TD2	F4-04	$0.0-$ 1000%	0.1%	50%	
	TD1	F4-02	0.00 to 2.50	0.01	1.00	$10 \mathrm{VDC} / 1.00$ (2) $^{(2)}$
	TD2	F4-04	0.00 to 2.50	0.01	0.50	

(1) A gain of 0.5 will set $5 \mathrm{VDC}=100 \%$; a gain of 2.0 will set $10 \mathrm{VDC}=50 \%$.
(2) Maximum output signal level is +11VDC.

Table 4. Selecting the Monitored Output (GPD515/G5)					
Terminal	Parameter	Set Value	Control Method ${ }^{(1)}$	Output Monitor	Scaling
$\begin{gathered} \text { TD1 } \\ \text { or } \\ \text { TD2 } \end{gathered}$	$\begin{aligned} & \text { F4-01 } \\ & \text { or } \\ & \text { F4-03 } \end{aligned}$	1	0, 1, 2, 3	Frequency Reference	10V/100\%
		2	0, 1, 2, 3	Output Frequency	10V/100\%
		3	0, 1, 2, 3	Output Current	$10 \mathrm{~V} /$ drive rated current
		5	1, 2, 3	Motor Speed	10V/100\%
		6	0, 1, 2, 3	Output Voltage	10V/200VAC (400VAC)
		7	0, 1, 2, 3	DC Bus Voltage	10V/400VDC (800VDC)
		8	0, 1, 2, 3	Output Power (kW)	10V/100\%
		9	2, 3	Torque Reference	10V/100\%
		15	0, 1, 2, 3	Terminal 13 Input	10V/10V
		16	0, 1, 2, 3	Terminal 14 Input	10V/10V (20mA)
		17	0, 1, 2, 3	Terminal 16 Input	10V/10V
		18	0, 1, 2, 3	Motor Secondary Current (Iq)	$10 \mathrm{~V} /$ motor rated current
		19	2, 3	Motor Exciting Current (Id)	$10 \mathrm{~V} /$ motor rated current
		20	0, 1, 2, 3	Output Frequency After Soft-Start (SFS)	10V/100\%
		21	1, 3	ASR Input	10V/100\%
		22	1, 3	ASR Output	$10 \mathrm{~V} /$ motor rated current
		23	1,3	Speed Deviation / Speed Regulator Input	10V/100\%
		24	0, 1, 2, 3	PID Feedback	10V/100\%
		26	2, 3	Output Voltage Reference (Vq)	10V/230V (460V)
		27	2, 3	Output Voltage Reference (Vd)	10V/230V (460V)

(1) Output available only when using one of the listed control methods (A1-02 setting):

0: V/Hz Mode, 1: V/Hz with Encoder (PG), 2: Open Loop Vector, 3: Closed Loop Flux Vector

Table 5. Selecting the Monitored Output (F7/G7)					
Terminal	Parameter	Set Value	Control Method	Output Monitor	Scaling
$\begin{aligned} & \text { TD1 } \\ & \text { or } \\ & \text { TD2 } \end{aligned}$	$\begin{aligned} & \text { F4-01 } \\ & \text { or } \\ & \text { F4-03 } \end{aligned}$	1	0,1,2,3,4	Frequency Reference	10V: Maximum output frequency ($0 \sim \pm 10 \mathrm{~V}$ possible)
		2	0,1,2,3,4	Output Frequency	10V: Maximum output frequency ($0 \sim \pm 10 \mathrm{~V}$ possible)
		3	0,1,2,3,4	Output Current	10V: Drive rated output current ($0 \sim 10 \mathrm{~V}$, absolute value)
		5	1,2,3,4	Motor Speed	10V: Maximum output frequency ($0 \sim \pm 10 \mathrm{~V}$ possible)
		6	0,1,2,3,4	Output Voltage	10V: 200VAC (400VAC)
		7	0,1,2,3,4	DC Bus Voltage	10V: 400VDC (800VDC)
		8	0,1,2,3,4	Output Power	10V: Drive capacity kW ($0 \sim \pm 10 \mathrm{~V}$ possible)
		9	2,3,4	Torque Reference	10V: Motor rated torque ($0 \sim \pm 10 \mathrm{~V}$ possible)
		15	0,1,2,3,4	Terminal A1 Input	$\begin{gathered} 10 \mathrm{~V}: 100 \% \text { (at } 10 \mathrm{~V} \text { input) } \\ (0 \sim \pm 10 \mathrm{~V} \text { possible }) \end{gathered}$
		16	0,1,2,3,4	Terminal A2 Input	10V: 100% (at 10 V input) ($0 \sim \pm 10 \mathrm{~V}$ possible)
		17	0,1,2,3,4	Terminal A3 Input	$10 \mathrm{~V}: 100 \%$ (at 10 V input) ($0 \sim \pm 10 \mathrm{~V}$ possible)
		18	0,1,2,3,4	Motor Secondary Current (Iq)	10V: Motor rated secondary current ($0 \sim \pm 10 \mathrm{~V}$ possible)
		19	2,3,4	Motor Excitation Current (Id)	10V: Motor rated secondary current ($0 \sim \pm 10 \mathrm{~V}$ possible)
		20	0,1,2,3,4	Output Frequency after Soft-Starter (SFS)	10V: Maximum output frequency ($0 \sim \pm 10 \mathrm{~V}$ possible)
		21	1,3,4	ASR Input	10V: Maximum output frequency ($0 \sim \pm 10 \mathrm{~V}$ possible)
		22	1,3,4	ASR Output	10V: Motor rated secondary current ($0 \sim \pm 10 \mathrm{~V}$ possible)
		24	0,1,2,3,4	PID Feedback	10V: Maximum output frequency ($0 \sim \pm 10 \mathrm{~V}$ possible)
		26	2,3,4	Output Voltage Reference (Vq)	$\begin{gathered} 10 \mathrm{~V}: 200 \mathrm{VAC}(400 \mathrm{VAC}) \\ (0 \sim \pm 10 \mathrm{~V} \text { possible }) \end{gathered}$
		27	2,3,4	Output Voltage Reference (Vd)	$10 \mathrm{~V}: 200 \mathrm{VAC}(400 \mathrm{VAC})$ $(0 \sim \pm 10 \mathrm{~V} \text { possible })$
		32	2,3,4	ACR (q) Output	$\begin{gathered} 10 \mathrm{~V}: 100 \% \\ (0 \sim \pm 10 \mathrm{~V} \text { possible }) \end{gathered}$
		33	2,3,4	ACR (d) Output	$\begin{gathered} 10 \mathrm{~V}: 100 \% \\ (0 \sim \pm 10 \mathrm{~V} \text { possible }) \\ \hline \end{gathered}$
		36	0,1,2,3,4	PID Input (Error)	$\begin{gathered} 10 \mathrm{~V}: 100 \% \\ (0 \sim \pm 10 \mathrm{~V} \text { possible }) \end{gathered}$
		37	0,1,2,3,4	PID Output	10V: Maximum output frequency $(0 \sim \pm 10 \mathrm{~V} \text { possible) }$
		38	0,1,2,3,4	PID Setpoint	10V: Maximum output frequency
		$42^{(2)}$	4	Estimated Motor Flux	10V: Rated motor flux
		$43^{(2)}$	4	Motor Flux Current Compensation	10V: Motor rated secondary current ($0 \sim \pm 10 \mathrm{~V}$ possible)
		44	3,4	ASR Output without Filter	10V: Motor rated secondary current ($0 \sim \pm 10 \mathrm{~V}$ possible)
		45	3,4	Feed Forward Control Output	10V: Motor rated secondary current ($0 \sim \pm 10 \mathrm{~V}$ possible)

(1) Output available only when using one of the listed control methods (A1-02 setting):

0: V/Hz, 1: V/Hz with Encoder (PG), 2: Open Loop Vector, 3: Closed Loop Flux vector, 4: Open Loop Vector $2^{(2)}$
(2) G7 only.

